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Abstract 

One of the challenges for geoid determination is the combination of 

heterogeneous gravity data. Because of the distinctive spectral content of different 

data sets, spectral combination is a suitable candidate for its solution. The key to 

have a successful combination is to determine the proper spectral weights, or the 

error degree variances of each data set. In this paper, the error degree variances of 

terrestrial and airborne gravity data at low degrees are estimated by the aid of a 

satellite gravity model using harmonic analysis. For higher degrees, the error 

covariances are estimated from local gravity data first, and then used to compute 

the error degree variances. The white and colored noise models are also used to 

estimate the error degree variances of local gravity data for comparisons. Based 

on the error degree variances, the spectral weights of satellite gravity models, 

terrestrial and airborne gravity data are determined and applied for geoid 

computation in Texas area. The computed gravimetric geoid models are tested 

against an independent, highly accurate geoid profile of the Geoid Slope 

Validation Survey 2011 (GSVS11). The geoid computed by combining satellite 

gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data 

agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 

km. After incorporating the airborne gravity data collected at 11 km altitude, the 

standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the 

feasibility of spectral combination in geoid computation and the contribution of 

airborne gravity in an area of high quality terrestrial gravity data. Using the 
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GSVS11 data and the spectral combination, the degree of correctness of the error 

spectra and the quality of satellite gravity models can also be revealed. 

Key words: Airborne gravity · Error degree variance · Geoid· Satellite 

gravity· Spectral combination · Spectral weight · Terrestrial gravity 

1 Introduction  

Geoid determination using airborne gravity has been making steady progress 

since 1990s (Schwarz and Li 1996; Forsberg et al. 2000; Marchenko et al. 2001; 

Bayoud and Sideris 2003; Novák and Heck 2002; Novák et al. 2003; Olesen 2003; 

Hwang et al. 2007; Barzaghi et al. 2009; Hsiao and Hwang 2010; Forsberg et al 

2012; Bae et al 2012; Jekeli et al. 2013; Smith et al. 2013). Hsiao and Hwang 

(2010) showed that the airborne gravity improves the agreement with 

GPS/leveling data from 9.5 to 8.7 cm in Taiwan; Bae et al. (2012) reported an 

improvement from 6.6 to 5.5 cm in South Korea. Forsberg et al. (2012) 

demonstrated a similar improvement (from 15 cm to 13 cm) in GPS/leveling 

comparisons in the United Arab Emirates. All computation methods used above 

are based on the traditional remove-restore technique with kernel 

truncation/modification. Smith et al. (2013) dealt with the airborne gravity data in 

a slightly different way. Instead of mixing the airborne data with terrestrial data in 

space domain using the least squares collocation, the airborne gravity data is 

expanded into a spherical harmonic series, then combined with the satellite 

gravity model GOCO02S (Goiginger et al. 2011) and EGM2008 (Pavlis et al. 

2012, 2013) spectrally using empirically determined weights. This coefficient 

model is then used as the reference model in the traditional remove-restore 

fashion where the Stokes’s kernel is truncated at degree and order 480.  

In this paper, the spectral weights are determined from gravity data based 

on their distribution and spacing. The error degree variances at the lower degrees 

are estimated with the aid of a satellite gravity model, and at higher degrees are 

computed from the error covariances estimated from the local gravity data. For 

comparative analysis, the error degree variances of local gravity data are also 

estimated by using the white and colored noise models of the Royal Institute of 

Technology (KTH, Sjöberg 1986; Ågren 2004). The derived spectral weights are 

then applied to geoid computation in the southeastern Texas area. By comparing 

http://www.baidu.com/link?url=HQU2FMfSAADqjNvyaaqyEzja35udFB637YszmsEFkNNlwkq3wth8W5-wHfPhWoSA4pauo9Flyy43RaF0rWl0BpobcNRHShdwplFmjqyXgPEYHZnD_Qj1es5BGpPZVVxB


3 

GPS/leveling data and astrogeodetic deflections of the vertical (DoV) measured in 

the GSVS11 (Smith et al. 2013), the computed gravimetric geoid models are 

tested and evaluated. 

Mathematical formulations of spectral combination are presented in 

section 2. Section 3 formulates the estimation of error degree variances from 

gravity data and the white and colored noise models. Section 4 shows the 

numerical results. Conclusions and discussions are given in section 5. 

2 The method of spectral combination 

The global gravity models (GGM) have been widely used as the reference 

field in the local geoid computations. The reference gravity model can be written 

as  

1
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where RefN  is the uppermost degree of series expansion, a is the semi-major axis 

of the reference ellipsoid, ( )Ref Ref Ref

n nm nmC S   are the coefficient vectors, 

T
nmnmn SRY )(  is the transpose of the vector of normalized spherical harmonics 

of degree n (Heiskanen and Moritz 1967, p. 31), and , ,r    are the spherical 

coordinates of the computation point. 

If a satellite gravity model, terrestrial and airborne gravity data are 

combined spectrally, the height anomaly   can be computed as 

1( )Coef Terr AirT T T          (2) 

where  , CoefT , TerrT , AirT  and   are referred to the computation point on 

Earth surface,   is the normal gravity, 
TerrT  and 

AirT  are the residual 

disturbing potential of the terrestrial and airborne gravity, respectively. They are 

computed by   

   ( )( )Terr Terr Terr RefT K g g d
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         (3) 
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where 
Terrg  and 

Airg  are the terrestrial gravity anomaly on Earth surface and 

the airborne gravity disturbance at flight altitude, respectively. 
Refg  and 

Refg  

are the gravity anomaly and gravity disturbance computed from an ultra-high 

degree GGM at Earth surface and flight altitude, respectively. The kernel 

functions are given by 
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where 
Terr

n  and 
Air

n  are the spectral weights for the terrestrial and airborne 

gravity data, respectively, FlyH  is the mean flight altitude. 
2]/)[(  n

Fly aHa  is 

the downward continuation factor, because the airborne gravity disturbance 
Airg  

is at the flight altitude. nP  is Legendre’s polynomial of degree n,   is the 

angular distance between computation point and current point. TerrN  is the 

maximum degree corresponding to the spatial resolution of terrestrial gravity data. 

AirN  is the maximum degree of airborne gravity contribution, which is usually 

smaller than TerrN . Actually Eq. (5) and (6) are the degree weighted Stokes’s and 

Hotine’s kernel function. 

The contribution of satellite and reference gravity model is computed by 
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where 
Sat

n  and SatN  are the spectral weights and maximum degree of satellite 

gravity model, respectively. The last term in (7) is the contribution of the 

reference model, which accounts for the contribution outside the local gravity data 

coverage. Apparently, the reference model is used in a more complicated way 

than the standard remove-restore method.  
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The geoid model computed based on above formulas is to the spatial 

resolution of terrestrial gravity data. Higher spectra of the gravity field can be 

added by using the residual terrain model (RTM) (Forsberg 1984). Because RTM 

is used to add higher frequencies that exceed the maximum degree of the kernel 

functions (5) and (6), it can be used in a simple remove-restore fashion (e.g., 

Wang et al. 2012).  

The geoid height can be computed from the height anomaly by 

 N     (8) 

where   is the geoid-quasigeoid separation term (Heiskanen and Moritz, 1967, p. 

326): 


 Bg
     (9) 

where Bg  is the Bouguer anomaly. Better approximation of the separation term 

can be found in Flury and Rummel (2009). To keep consistence with the GSVS11 

geoid profile, the simple approximation Eq. (9) is used in this paper. 

Neither terrestrial nor airborne gravity data are used for the determination 

of satellite gravity models. The errors in satellite model, terrestrial and airborne 

data can be assumed to be uncorrelated, thus the error degree covariances between 

them are zeros. Under this assumption, the spectral weights 
Sat

n , 
Terr

n  and 

Air

n  can be computed by (Wenzel 1982; Sjöberg 1981) 
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where 
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and 
Sat

nc , 
Terr

nc  and 
Air

nc  are the error degree variances of satellite gravity model, 

terrestrial and airborne gravity data, respectively. The error degree variances of 

satellite gravity models are usually computed from the error coefficients coming 

with the models. Thus only the error degree variances of terrestrial and airborne 

gravity data need to be estimated. 

3 Error degree variance estimation 

In this section, the methods of error degree variance estimation are 

described. Section 3.1 presents the estimation of error degree variance of 

terrestrial and airborne gravity data at low degrees ( SatNn  ) with the help of 

satellite gravity models. Section 3.2 formulates the estimation of error degree 

variances at higher degrees )( SatNn   from gravity data directly. At the end of 

the section, the KTH error degree variance model is also presented (Ågren 2004, 

Sjöberg 1986). 

3.1 Error degree variances at the low degrees 

The error degree variances of terrestrial and airborne gravity at low 

degrees are estimated by the aid of a satellite gravity model. The observed gravity 

data g  (terrestrial and airborne) and satellite gravity model 
Satg  can be 

written as 
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where ng  are the spherical harmonics of gravity anomaly signal, 
g

n

  and 

Sat

n  are the error coefficients of spherical harmonic expansion of the observed 

gravity anomaly and the satellite model, respectively. 

The residual gravity anomaly is then 

2 2

2 1
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Up to degree NSat , the errors in the observed gravity anomaly and satellite 

gravity model can be considered as uncorrelated. Using the orthogonality of the 

surface harmonics, we obtain 

Res g Sat

n n nc c c   2 Satn N      (17) 

or 

g Res Sat

n n nc c c    2 Satn N      (18) 

where 
Res

nc  are the degree variances of the residual field computed from its 

spherical harmonic expansion, 
Sat

nc  are the error degree variances computed from 

the error coefficients of satellite gravity model.  

Global harmonic analysis can only apply to global data sets (Rapp and 

Pavlis 1990). The terrestrial and airborne gravity data are given locally. For a 

global harmonic analysis, the residual gravity anomalies computed from an ultra-

high degree GGM (e. g. EGM2008) and the satellite gravity model can be patched 

outside the local data coverage. Ellipsoidal harmonic coefficients are derived by 

the ellipsoidal harmonic analysis using numerical quadrature formula (Rapp and 

Pavlis 1990) and then transformed to spherical harmonic coefficients up to degree 

NSat (Jekeli 1988; Gleason 1988). The spherical harmonic coefficients are used to 

compute the degree variances 
Res

nc , which are consistent with the error degree 

variances of satellite gravity model. For terrestrial gravity, the harmonic analysis 

is performed on the reference ellipsoid. The airborne gravity data are collected at 

the flight altitude, thus the harmonic analysis is performed on a larger ellipsoid 

with the major axis Flya H . 
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3.2 Error degree variances at the medium and high degrees 

The error degree variances of terrestrial and airborne gravity at higher 

degrees are estimated by using the method of “leave-out-one cross validation” 

(LOOCV). This method has been used to validate how accurately a predicative 

model will perform (e.g., Picard and Cook 1984; Kusche and Klees 2002). On the 

other hand, this method can also be used to estimate the high frequency gravity 

errors (e.g., Saleh et al. 2013). The procedure goes like this: excluding the point of 

interest, a number of nearest data points around it are used to predict the value at 

the point of interest. The difference between the observation and interpolated 

value at the point of interest is 

Intg g         (19) 

where Intg  is the interpolated gravity anomaly.  

The interpolated field should be accurate at long wavelengths and canceled 

out in (19). Thus the discrepancy   contains only the medium and high 

frequencies of errors and residual gravity signals. If we assume the high frequency 

errors are much larger than the residual signals at this frequency band, then the 

discrepancy in (19) can be considered as a good measure of medium and high 

frequency errors in data. This assumption was used to estimate high frequency 

errors in gravity data (Saleh et al. 2013), and it will be verified in the comparisons 

with the KTH error degree variance model in section 4. 

The error covariance function can be computed by (Tscherning and Rapp 

1974)  
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where i  and j  are the root mean square values of the discrepancies in each 

mean block whose area is Ai and Aj, respectively. The spherical distance   to 

which a special product at ij  is determined by 
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where   is the interval of spherical distance. 

The error degree variances of local gravity data can be computed from the 

covariance function by (Heiskanen and Moritz 1967, p. 257; Wenzel 1982) 


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where 1n   for terrestrial gravity anomalies, and 
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for airborne gravity disturbances at the mean flight altitude HFly. 

In practice, only local data are used to compute the covariance function 

and the integration in Eq. (22) is truncated in an area where data are given. The 

truncation affects the weights at lower degree mostly. Thus the spectral weights at 

lower degree have to be replaced by those estimated in section 3.1. 

3.3 KTH error degree variance model 

Ågren (2004) used the white and colored noise models to estimate the 

error degree variances of local gravity data. For the white noise part, the error 

degree variances are given as 
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where w  is the standard derivation of the white noise, NQ is the Nyquist 

frequency.  

 For the colored noise part, the covariance function can be expressed using 

the reciprocal distance (Moritz 1980; Sjöberg 1986): 

 2

 ) c 1 

 

C(  [  (1 )  (1 ) cos ]

 (25) 

 2 1 2 cos   2

where c  is the standard deviation of the colored noise,   is a constant that 

can be computed from c  and the correlation length 1/2  at which the 

covariance function has value of C(0)/2. 
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The error degree variances of colored noise are given by 

2

2
(1 )c nc
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

 
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   0 1   2 Qn N    (26) 

The final error degree variances are then computed as  

c

n

w

nn ccc   2 Qn N     (27) 

Above formulas can be applied to airborne gravity data as well, the 

downward continuation needs to be considered, so the error degree variances at 

sea level are 

2sea Altitude

n n nc c   2 Qn N       (28) 

where n  is the downward continuation factor in Eq. (23), 
sea

nc  and 
Altitude

nc  are 

the error degree variances at sea level and flight altitude, respectively. 

4 Data, computation and test 

4.1 Data used and computation 

For validating gravimetric geoid accuracy, the National Geodetic Survey 

(NGS) conducted “Geoid Slope Validation Survey of 2011” (GSVS11, Smith et al. 

2013) in Texas. Along the 325 km traverse from the city of Austin to Rockport 

(Fig. 1), GPS derived ellipsoidal heights and spirit leveled orthometric heights 

were measured at 218 control marks, at 216 of the 218 stations the astrogeodetic 

DoVs were measured using ETH Zurich’s “Digital Astronomical Deflection 

Measuring System” (DIADEM) (Bürki et al. 2004). The average accuracy of the 

differential ellipsoidal heights was 0.44 cm. The accuracy of differential 

orthometric heights was 1.3 cm between any pair of marks. The formal error of 

the surface DoVs was 0.1′′.  

The gravimetric geoid is computed at a 1′ × 1′ grid resolution over the 

area 27° ≤ φ ≤ 31°, 261° ≤ λ ≤ 264° . In order to reduce the edge effects 

caused by the integration of local data with a spherical cap of 2°, an enlarged data 

area bounded by 25° ≤ φ ≤ 33° , 258.5° ≤ λ ≤ 266.5°  is selected. The 

topography is flat in the area, and the mean and RMS value of the topographic 

heights are 123.9 m and 178.2 m. The mean and RMS values of the reference 

gravity anomalies (EGM2008) are -11.3 and 20.8 mGal, respectively. There are 
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29282 land gravity data and 56299 DTU13 (Andersen et al. 2013) altimetric 

gravity anomalies in the area. Airborne gravity was collected by GRAV-D project 

(Gravity for the Redefinition of the American Vertical Datum) at a mean flight 

altitude of 11065 m. An along track 120 second Gaussian filter had been applied 

to smooth out the high frequency noises in the airborne data (GRAV-D Science 

Team, 2012). The spatial distribution of the land, altimetric and airborne gravity 

data is plotted in Fig. 1. It also shows the GSVS11 survey line, the location of the 

city of Austin and the boundary of computation area.  

 

Fig. 1 Distribution of land (red), altimetric (cyan), airborne (green) gravity data, GSVS11 survey line (black), 

location of the city of Austin (blue star), and the boundary of computation area (purple) 

Three satellite gravity models, namely GOCO03S (Mayer-Gürr et al. 

2012), GO_CONS_GCF_2_DIR_R5 (DIR5) (Bruinsma et al. 2013), and 

GO_CONS_GCF_2_TIM_R5 (TIM5) (Brockmann et al. 2014), are used. The 3′′ 

Shuttle Radar Topography Mission (SRTM) elevation data (Farr et al. 2007) over 

the area 23° ≤ φ ≤ 35°, 257° ≤ λ ≤ 268° are used for RTM computation. 

After removing EGM2008, the residual terrestrial gravity anomalies are 

gridded at a 1′ × 1′  equiangular grid using program GEOGRID of the 

GRAVSOFT package (Tscherning et al. 1991). The residual airborne gravity 

disturbances with respect to EGM2008 are computed at the mean flight altitude 

and gridded into a 1′ × 1′ grid. The RTM gravity effects are computed by flat-

top prism integration from 3′′ detailed SRTM and 5′ reference topography with a 

100 km integration radius using program TC (Forsberg 1984). The mean and 
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RMS value of the RTM effects are -0.07 mGal and 4.16 mGal for terrestrial 

gravity anomaly, 0.73 mGal and 0.74 mGal for airborne gravity disturbance, 

respectively. The gridded residual terrestrial gravity anomalies and airborne 

gravity disturbances are inserted into Eq. (3) and (4). The radius of the spherical 

integration cap is empirically chosen as 2°. The maximum degree NTerr in Eq. (5) 

is chosen as 10800 corresponding to 1′ grid spacing of terrestrial data. The 

contributions of satellite gravity model and reference model are computed through 

Eq. (7). The RTM effects on height anomaly are restored to compensate for the 

removal operation. All the computations are based on the GRS80 (Geodetic 

Reference System 1980) ellipsoid and the tide-free system.  

4.2 Combination of two data types 

In this section, numerical results of the combination of two data types are 

presented. We start with the combination of satellite gravity models and terrestrial 

gravity data. This combination is the classical one for areas where airborne 

gravity data are not available. Then the combination of satellite models and 

airborne data is presented for comparison. 

For estimation of the error degree variances of terrestrial gravity data 

below degree NSat, the residual gravity anomalies relative to satellite gravity 

model are averaged into 10′ × 10′ on the GRS80 ellipsoid. Outside this area, the 

grids are filled with residual gravity anomalies computed from EGM2008 and 

satellite model. A set of spherical harmonic coefficients are computed to degree 

and order NSat using global harmonic analysis. The error degree variances are then 

computed using Eq. (18). Based on these error degree variances, the spectral 

weights of satellite gravity models and terrestrial gravity data below degree NSat 

are determined and illustrated in Fig. 3, 4, and 5.  

Fig. 2 shows the error degree variances of satellite gravity models 

GOCO03S, DIR5 and TIM5, no error calibration applied. The error degree 

variances differ significantly above degree 140. 
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Fig. 2 Error degree variances of GOCO03S, DIR5 and TIM5 

 

Fig. 3 Spectral weights of GOCO03S and terrestrial gravity data 

 

Fig. 4 Spectral weights of DIR5 and terrestrial gravity data 
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Fig. 5 Spectral weights of TIM5 and terrestrial gravity data 

Once the spectral weights of satellite gravity model and terrestrial gravity 

data below degree NSat are determined, a gravimetric geoid can be computed by 

spectrally combining the two data sets without using airborne data. Note that the 

terms for airborne gravity in the equations of Sect. (2) and (3) should not be 

considered in the computation. From Fig. 3, 4 and 5, one can see that the 

terrestrial gravity starts contribution at degree 120, 160 and 140 for satellite 

gravity models GOCO03S, DIR5 and TIM5. The weights of the terrestrial data 

and satellite model intersect at the degree 187, 251 and 213, respectively. At these 

degrees, the satellite model and terrestrial gravity have equal contribution. After 

these degrees, the terrestrial gravity contribution increases while that of the 

satellite model decreases. The degrees at which the weights of each satellite model 

reduce to zero are 196, 281 and 224. After those degrees the terrestrial gravity 

takes full weight. Notice that the weights of DIR5 decrease much slower than 

those of GOCO03S and TIM5, yielding much more contributions from DIR5 

model in the combination, this can be explained by Fig. 2 that the DIR5 modeled 

error degree variances are in general rather small compared with the other two 

satellite models. 

Table 1 Statistics of the differences between gravimetric geoid models and GSVS11 GPS/leveling (unit: m) 

Truncation degree 

NSat 

GOCO03S+Terrestrial DIR5+Terrestrial TIM5+Terrestrial 

Mean Std Mean Std Mean Std 

150 0.356 0.014 0.372 0.021 0.358 0.017 

160 0.350 0.012 0.366 0.017 0.351 0.012 

170 0.352 0.014 0.378 0.018 0.364 0.016 

180 0.349 0.011 0.375 0.025 0.361 0.017 

190 0.337 0.022 0.355 0.034 0.340 0.031 

200 0.332 0.018 0.360 0.024 0.348 0.022 
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Even if the spectral weights are computed to the maximum degree of 

satellite models, it turns out that the truncation of satellite models at certain degree 

is necessary for a better geoid solution. This fact indicates: a) the potential 

coefficients above the truncation degree are not accurate; b) the error coefficients 

are not reliable at higher degrees. If they were, the truncation would be 

unnecessary. Table 1 lists the statistics of the differences between the computed 

gravimetric geoids with different truncation degree NSat and the GSVS11 

GPS/leveling data. At all the truncation degrees, the GOCO03S based geoid 

performs better than the other two geoid models in terms of the standard deviation 

of differences. Although DIR5 is based on the combination of GRACE, GOCE 

and LAGEOS data, DIR5 performs the worst in comparison with the other two 

models. Notice the big differneces of the error degreee variances between the 

three satellite models, it suggests that the error degree variances of DIR5 model 

may be too optimisitc at higher degrees (Fig. 2).  

The optimal truncation degree for GOCO03S is at 𝑁𝑆𝑎𝑡 = 180, resulting 

the standard deviation of the difference of 1.1 cm with the GSVS11 data, and at 

𝑁𝑆𝑎𝑡 = 160 for both DIR5 and TIM5 based geoid with the standard deviation of 

1.7 cm and 1.2 cm, respectively (Table 1).  

 

Fig. 6 Differences between terrestrial enhanced gravimetric geoids and GSVS11 GPS/leveling (unit: cm) 

Fig. 6 shows the differences between the geoid models and the GSVS11 

GPS/leveling data. EGM2008 geoid is also included in the comparison. The first 

observation from Fig. 6 is that both the EGM2008 geoid and the DIR5 based 

geoid have a larger slope from zero to 240 km and a large discrepancy at the end 

of the traverse (near shore). The GOCO03S and TIM5 based geoid models have 

much smaller slope and agree better with GSVS11 data near shore, indicating the 
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improvement in the recent satellite gravity models. The GOCO03S based geoid 

with 𝑁𝑆𝑎𝑡 = 180 is designated ‘tGeoid’, where the prefix ‘t’ indicates only use 

of terrestrial gravity data. 

 

Fig. 7 Differences between airborne enhanced gravimetric geoids and GSVS11 GPS/leveling (unit: cm) 

For comparison, the geoid models are also computed by combining satellite 

gravity model and airborne gravity data. The same procedure for spectral 

weighting of satellite model and terrestrial data applies to the airborne gravity data. 

Note that the global harmonic analysis is performed on an expanded ellipsoid with 

the major axis Flya H  and the terms for terrestrial gravity in the equations of 

Sect. (2) and (3) should not be considered in the computation. 

Fig. 7 plots the differences of the EGM2008 geoid and the geoid based on the 

combination of airborne data with each satellite model relative to the GSVS11 

GPS/leveling data, respectively. The standard deviation of differences for the 

GOCO03S, DIR5 and TIM5 based geoid are 1.4 cm, 2.5 cm and 1.8 cm, 

respectively. From Fig. 6 and Fig. 7, the satellite model and terrestrial gravity 

combined geoid models match the GPS/leveling data much better than the geoid 

models derived from the combination of satellite model and airborne data. This 

can be attributed to the dense coverage and good quality of terrestrial data over 

this study area, as well as the high flight altitude of airborne data (𝐻𝐹𝑙𝑦 =

11065 m). Therefore, the airborne data should be used as the complement rather 

than the substitute to the terrestrial data. Moreover, the combination results of 

satellite model and airborne data confirm that GOCO03S leads to the best geoid 

solution and DIR5 yields the worst solution among the three satellite gravity 

models. 



17 

One restriction of the spectral weighting at the low degrees is that a high 

degree GGM (e. g. EGM2008) is needed to augment the local gravity data to 

ensure global coverage for the estimation of global error degree variances. In the 

case of small local gravity data coverage, the spectral weights depend largely on 

the ratio of error spectra between the ultra-high degree GGM and the satellite 

gravity model. For the application over continental areas (e. g. the North 

American continent), however, the error spectra of the local gravity data are 

expected to be more decisive to the derived spectral weights. 

4.3 Combination of satellite, terrestrial and airborne gravity  

4.3.1 Spectral weight determination 

Spectral weights for satellite, terrestrial and airborne gravity up to degree 

NSat are determined in section 4.2. The weights above NSat are determined using 

the LOOCV method. Program GEOGRID is employed for interpolation 

(Tscherning et al. 1991). The interpolation parameters NQMAX and IPWR, the 

number of nearest data points in each quadrant and the power of inverse distance 

for weighting, are determined experimentally according to the average spacing 

and the spatial distribution of the data set. In the study area, the average spacing 

between scattered land gravity points is about 7 km. The DTU13 altimetic gravity 

anomalies are in 1′ × 1′ grids, about 2 km spacing. The GRAV-D airborne 

gravity data are given in about 140 m along track with track spacing of 10 km. 

The airborne data are resampled every 3 km, reducing total data points to 7934. 

Taking into account data spacing and distribution, the following GEOGRID 

interpolation parameters are chosen: NQMAX=10 & IPWR=2 for land gravity, 

NQMAX=40 & IPWR=1 for altimetric gravity, and NQMAX=20/30/40/50 & 

IPWR=1 for airborne gravity. The statistics of high frequncy errors in land, 

altimetric and airborne gravity data for different interpolation paramters are 

summarized in Table 2.  

The discrepancies of terrestrial and airborne gravity data are computed at 

5′ × 5′ equiangular grids. The grids are used to compute the error covariance 

functions which are then used to estimate the error degree variances. The variance 

and correlation length of the error covariance functions of terrestrial data are 2.62 

mGal2 and 2.1°, and those of airborne data with NQMAX_Air = 30 are 2.21 
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mGal2 and 5°, respectively. Four sets of spectral weights for GOCO03S, terrestrial 

and airborne gravity data are derived. The spectral weights are plotted in Fig. 8 on 

the left side. For comparison, the spectral weights determined based on the KTH 

error degree variance model are illustrated in Fig. 8 on the right side. The 

parameters used for KTH model are listed in Table 3. 

Table 2 Statistics of the high frequency errors in gravity data (unit: mGal) 

Data type NQMAX IPWR Max Mean RMS 

Land 10 2 10.968 1.251 1.895 

Altimetry 40 1 10.735 1.307 1.724 

Airborne 

20 1 9.350 1.010 1.410 

30 1 11.248 1.230 1.705 

40 1 12.788 1.433 1.973 

50 1 14.128 1.624 2.228 
 

Table 3 Parameters for KTH error degree variance model 

Parameter Terrestrial Airborne 

1/2
  (°) 0.5 0.5 0.5 0.5 0.5 

0

w  (mGal) 1 1 1 1 1 

0

c  (mGal) 3 1.5 2.0 2.5 3.0 

 

   

NQMAX_Air = 20                      
,

0 1.5c A i r   

   

NQMAX_Air = 30                    
,

0 2 .0c A i r   
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NQMAX_Air = 40                    
,

0 2 .5c A i r   

    

NQMAX_Air = 50       
,

0 3 .0c A i r   

Fig. 8 Spectral weights of GOCO03S, terrestrial and airborne gravity data (left: from data; right: from KTH model) 

Oscillations in the weights of terrestrial (black dash line) and airborne 

(green dash line) gravity are the feature of gravity data. In spite of the oscillations, 

the broad shape and trend are clear, the weights of airborne gravity fast decrease 

to the level below 0.1 due to the attenuation effect of flight altitude. To remove 

the local oscillations, a 5th order polynomial fitting to the spectral weights above 

degree 180 is performed and used in later geoid computations. 

The spectral weights determined from KTH error degree variance model 

have the same shape and similar magnitude as those derived from the local data. 

The good agreement shows that the KTH error degree variance model could be 

realistic if proper parameters are chosen. On the other hand, the good agreement 

verifies also that high frequency errors estimated by using LOOCV method 

should be representative.  

The KTH error degree variance model needs a priori standard error 
w

0  

and 
c

0  of each data set which are selected quite subjectively, if there is no 

independent data available. For the spectral weights determined from data, the 
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error degree variances are estimated from the data set itself and the parameters 

NQMAX and IPWR can be determined based on the average spacing and spatial 

distribution of each data set. 

The spectral weights determine the contribution of each data set spectrally. 

Take the spectral weights with NQMAX_Air = 30 for example, the weights of 

airborne gravity (green solid line) smoothly decrease from 0.49 at degree 181 to 

zero after degree 1600, and those of terrestrial gravity (black solid line) increase 

from 0.51 to 1 symmetrically. Thus the maximum degree NAir in Eq. (6) for 

airborne gravity should be 1600, yielding full weighted terrestrial gravity 

contribution above degree 1600. Another observation from Fig. 8 (left) is that 

most contributions from the airborne gravity are at the medium wavelengths 

between degree 160 and 550 approximately, while terrestrial gravity covers the 

medium and short wavelengths of gravity field. 

4.3.2 Downward continuation stabilization 

The downward continuation of airborne gravity data is an unstable process. 

The Tikhonov regularization (Tikhonov 1963) is often used. In this study, the 

regularization is not needed and the stabilization of the process is naturally done 

by using the spectral weights.  

Fig. 9 shows the original and spectrally weighted Hotine’s kernel functions 

(maximum degree 1600) by spherical distance at sea level. It shows that the 

weighted kernel gradually converges to zero, while the original kernel swings 

largely around zero. This downward continuation effect can also be demonstrated 

more effectively if the Hotine’s kernel functions at ψ = 1° are plotted as a 

function of expansion degree (Fig. 10).  

Fig. 10 illustrates the unstable nature of the downward continuation, 

especially at high degrees. Without the spectral weights, the Hotine’s kernel 

function fluctuates, and the magnitude of swinging increases exponentially with 

higher degrees – the reason for divergence of the downward continuation. After 

applying the spectral weights, the Hotine’s kernel function goes to zero gradually 

at high degrees. Notice that the spectral weights are determined from gravity data 

and the downward continuation is optimally stabilized. This method has 

advantages over other methods, such as the Tikhonov regularization in which the 

http://www.baidu.com/link?url=V7ElSr9vb-utJwLBDElj0pCKrHP27H-CXQCyfDU6BhYxyttiSvnQa0nmP0ETN-AU
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stabilization parameters are chosen empirically and the choices sometimes are 

quite artificial and time consuming (Wang et al. 2007). 

 

Fig. 9 Hotine’s kernel functions by spherical distance with 𝑁𝐴𝑖𝑟 = 1600 

 

Fig. 10 Hotine’s kernel functions by expansion degree at ψ = 1° 

4.3.3 Geoid model validation 

Applying the spectral weights derived above (Fig. 8), eight gravimetric 

geoid models are computed. Table 4 presents the statistics of the differences 

between the geoid models and the GSVS11 GPS/leveling derived geoid heights. 

The parameters NQMAX_Air and 
,

0

c Air  are given in the first and fourth column. 

It can be seen that the data driven and KTH spectral weighting yield nearly 

identical geoid solutions in terms of the standard deviations, though there are 5~7 

mm biases between the geoid models computed based on the two spectral 

weighting method. For each parameter, the agreement between the geoid model 

and GPS/leveling data is better 1 cm. The numerical results confirm the validity 

and stability of the data driven and the KTH spectral weighting method for geoid 

computation. 
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Table 4 Statistics of the differences between gravimetric geoids and GSVS11 GPS/leveling (unit: m) 

NQMAX_Air Mean Std 
,

0

c Air (mGal) Mean Std 

20 0.343 0.009 1.5 0.348 0.010 

30 0.344 0.008 2.0 0.350 0.009 

40 0.344 0.009 2.5 0.351 0.009 

50 0.346 0.010 3.0 0.352 0.010 

The gravimetric geoid models with NQMAX_Air=30 and 
,

0 2.0c Air   are 

designated ‘aGeoid’ and ‘aGeoid-KTH’, respectively. The prefix ‘a’ stands for 

geoid models combined with airborne and terrestrial data. Fig. 11 plots the geoid 

height differences between the aGeoid and the tGeoid. The minimum and 

maximum of the differences are -3.3 cm and 4.6 cm, which reflect the 

improvement brought by airborne gravity over this area. According to Fig. 8 (left, 

NQMAX_Air = 30), the contributions of airborne data concentrate at the spectral 

bands between degree 160 and 550. Moreover, the addition of airborne gravity 

also results in changes of the spectral weights of satellite gravity model between 

degree 120 and 180 (Fig 3 vs. Fig 8), hence long wavelength features can be 

observed in the discrepancies. 

 
Fig. 11 Geoid height differences between the aGeoid and the tGeoid (Min = -3.3, Max = 4.6, Mean = 0.1, Std = 1.7, unit: cm) 

Fig. 12 plots the differences of EGM2008 geoid, xUSGG2011, tGeoid, 

aGeoid and aGeoid-KTH with respect to the GSVS11 GPS/leveling derived geoid 

heights. Table 5 summarizes the statistics of these differences. The xUSGG2011 

is a gravimetric geoid computed by Smith et al. (2013) based on remove-compute-

restore method and Stokes’s kernel modification. A GGM derived by empirically 

blending GOCO02S (Goiginger et al. 2011), EGM2008 and GRAV-D airborne 
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gravity data in Texas was employed as its reference model. After the 

incorporation of airborne gravity data, the standard deviation of the differences for 

the aGeoid decreases to 0.8 cm, which is slightly better than xUSGG2011 (std =

0.9 cm) and the aGeoid-KTH (Std = 0.9 cm). From Fig. 12, one can see that the 

deviations in the curve of tGeoid disappear in that of aGeoid, especially over the 

coastal area (after 280 km), indicating the improvement of accuracy due to the 

inclusion of airborne gravity data. The differences for the aGeoid are quite 

random and close to a constant value relative to the GPS/leveling derived geoid 

heights, while the curves of the xUSGG2011 and aGeoid-KTH exhibit gentle 

downward slopes which indicate small systematic errors. Notice the bias around 

0.35 m between all the gravimetric geoid models and the GPS leveling derived 

geoid heights, this is because of the different W0 values adopted by the 

gravimetric geoid model and the North America Vertical Datum 1988.  

Table 5 Statistics of the differences between gravimetric geoids and GSVS11 GPS/leveling (unit: m) 

Model Min Max Mean Std 

EGM2008 0.319 0.401 0.360 0.018 

xUSGG2011 0.320 0.393 0.355 0.009 

tGeoid 0.317 0.385 0.349 0.011 

aGeoid 0.313 0.373 0.344 0.008 

aGeoid-KTH 0.314 0.384 0.350 0.009 

 

Fig. 12 Differences between gravimetric geoids and GPS/leveling along GSVS11 survey line (cm) 

The DoVs derived from the five geoid models are also compared with the 

GSVS11 DoV measurements. The north-south and west-east components of DoVs 

on the geoid are computed by cubic spline from the geoid models. To facilitate the 

comparisons, the 216 surface DoVs measured by the DIADEM are reduced to the 

geoid by applying the correction corresponding to topographic height anomaly-to-

geoid correction. Table 6 presents the statistics of the differences in DoVs on the 
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geoid between these geoid models and GSVS11 measurements. The standard 

deviations of the discrepancies between the modeled DoVs and measured DoVs 

range from 0.19” to 0.22”for the north-south components and from 0.19” to 0.23” 

for the west-east components. What we can observe from Table 6 is that the 

addition of airborne data only slightly improves the match between modeled 

DoVs and measured DoVs. 

Table 6 Statistics of the differences in DoVs on the geoid between gravimetric geoids and GSVS11 measurements (unit: arcsec) 

Model 
North-South (ξ) West-East (η) 

Min Max Mean Std Min Max Mean Std 

EGM2008 -0.66 0.46 -0.08 0.22 -0.52 0.54 -0.05 0.23 

xUSGG2011 -0.60 0.48 -0.07 0.20 -0.57 0.57 0.03 0.19 

tGeoid -0.66 0.55 -0.06 0.20 -0.52 0.75 0.06 0.23 

aGeoid -0.64 0.49 -0.06 0.19 -0.55 0.62 0.06 0.21 

aGeoid-KTH -0.52 0.69 -0.05 0.20 -0.60 0.70 0.08 0.22 

5 Conclusions and discussions 

The spectral combination for geoid computation is tested in southwest 

Texas area. The spectral weights of terrestrial and airborne gravity data are 

determined from the gravity data directly. As a comparison, the KTH error degree 

variance model is also used to determine the spectral weights. Numerical results 

show not only the spectral weights, but also the geoid models computed from both 

methods are very close, even if the weights are determined in quite different ways. 

The good agreement between the spectral weights determined from gravity data 

and KTH error degree variance model implies that both methods capture the same 

error characteristics in different data sets, and the high frequency error estimated 

from data using LOOCV method should be realistic. 

The spectral weights from data are determined based on the average 

spacing and distribution of each data set. The spectral weight determination by the 

KTH error degree variance model requires a priori information of the errors in 

gravity data, which is assigned empirically – sometimes can be quite subjective if 

there is no independent data set available.  

Using the derived spectral weights, the gravimetric geoid by combining 

GOCO03S, terrestrial (land and altimetric) gravity agrees with GSVS11 

GPS/leveling data in ±1.1 cm in terms of standard deviation. The addition of 

GRAV-D airborne gravity data collected at 11 km altitude improves the 

agreement to ±0.8 cm over the 325 km traverse. The slight improvement over 
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xUSGG2011 (±0.9 cm) may be attributed to the better satellite gravity model 

(GOCO03S vs. GOCO02S) and improved spectral weighting scheme. The 

closeness of the results demonstrate the fact that whether the combination of 

different data sets is done using spherical harmonic series (xUSGG2011) or by 

local Stokes’s/Hotine’s surface integration in this paper, the results agree in mm 

level. 

A big advantage of spectral combination is the downward continuation 

stabilization of airborne gravity data. Since the spectral weight of airborne gravity 

quickly reduces to zero with increasing degree, it suppresses the high frequencies 

of airborne data and guarantees a stable geoid solution. The spectral combination 

method can also reveal the degree of correctness of the satellite gravity model and 

its error coefficient estimation. This method, combined with an independent high 

accuracy data set, such as GSVS11, can be useful for validating satellite gravity 

models and calibrating their error coefficients. 

This study was performed in a flat area with high quality terrestrial gravity 

data. For areas with rough topography and large variation of gravity field, such as 

in the Rocky Mountains, this approach will be tested when high quality 

independent data sets become available. 
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